彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics
作者:     供圖:     供圖:     日期:2022-08-25     來源:    

講座主題:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics

專家姓名:嚴(yán)運(yùn)安

工作單位:魯東大學(xué)

講座時(shí)間:2022年8月29日10:00-11:00

講座地點(diǎn):物電學(xué)院1511報(bào)告廳

主辦單位:煙臺(tái)大學(xué)物理與電子信息學(xué)院

內(nèi)容摘要:

The stochastic scheme is a fruitful tool for simulating the challenging non-Markovian quantum dynamics. Its performance at long time, however, degrades due to the intrinsic fast increase in the variance of the quantum Brownian motion. This talk presents the recent progress on developing the stochastic Liouville equations with piecewise stationary noises. Starting from a conventional stochastic scheme, we can always decompose the involved noises into two parts: the principal part assuming piecewise correlations and the auxiliary part recovering the full correlation. A partial stochastic average over the auxiliary noises yields a stochastic Liouville equation that only involves noises with piecewise correlations and can hence be averaged separatedly for different time intervals. Meanwhile the dissipative influence of the auxiliary noises is rigorously incorporated with integrals over the functional derivatives with respect to the principal noises. The working equation now assumes a similar structure to the non-Markovian quantum state diffusion. Thanks to the noise disentanglement in different time intervals, we can perform piecewise ensemble average and serve the average of the preceding interval as the initial condition of the subsequent propagation. This strategy avoids the long-time stochastic average and the corresponding statistical errors will be saturated at long times. This talk will give numerical results for the spontaneous decay of two-state atoms and the spin-boson model and shows that the suggested method enables us to simulate the long-time quantum dissipative dynamics with long memories in the non-perturbative regime.

主講人介紹:

嚴(yán)運(yùn)安,魯東大學(xué)教授。2002年于中國科學(xué)院理論物理研究所獲博士學(xué)位,2002-2012年,先后在中國科學(xué)院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究,2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué)。嚴(yán)運(yùn)安教授目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動(dòng)力學(xué)。

百家乐天上人间| 百家乐官网策略详解| 百家乐购怎么样| 988娱乐城| 百家乐官网下注技巧| 大发888xp缺少casino| 百家乐官网赌场网| 百家乐法则| 百家乐官网透视牌靴哪里有| 威尼斯人娱乐场内幕| 飞天百家乐官网的玩法技巧和规则| 澳客网比分直播| 百家乐香港六合彩| 缅甸百家乐官网娱乐| 水果机遥控器价格| 缅甸百家乐官网赌| 永利博线上娱乐城| 广东百家乐网| 木星百家乐的玩法技巧和规则| 电脑打百家乐官网怎么赢| 大发888网页登录| 百家乐娱乐城返水| 百家乐官网赌场代理| 云顶娱乐| 百家乐赌博软件下载| 百家乐官网室系统软件| 大发888国际赌场娱乐网规则 | 百家乐英皇娱乐| 百家乐官网永利娱乐场开户注册 | 百家乐官网连长| 任你博娱乐| 百家乐庄最高连开几把| 破解百家乐打路单| 至尊百家乐官网吕文婉| 老K| 全讯网程序| 澳门百家乐是怎样赌| 亚洲百家乐官网论坛| 球探比分 | 大发888 娱乐免费游戏| 百家乐稳赢技法|