彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics
作者:     供圖:     供圖:     日期:2022-08-25     來源:    

講座主題:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics

專家姓名:嚴(yán)運(yùn)安

工作單位:魯東大學(xué)

講座時(shí)間:2022年8月29日10:00-11:00

講座地點(diǎn):物電學(xué)院1511報(bào)告廳

主辦單位:煙臺(tái)大學(xué)物理與電子信息學(xué)院

內(nèi)容摘要:

The stochastic scheme is a fruitful tool for simulating the challenging non-Markovian quantum dynamics. Its performance at long time, however, degrades due to the intrinsic fast increase in the variance of the quantum Brownian motion. This talk presents the recent progress on developing the stochastic Liouville equations with piecewise stationary noises. Starting from a conventional stochastic scheme, we can always decompose the involved noises into two parts: the principal part assuming piecewise correlations and the auxiliary part recovering the full correlation. A partial stochastic average over the auxiliary noises yields a stochastic Liouville equation that only involves noises with piecewise correlations and can hence be averaged separatedly for different time intervals. Meanwhile the dissipative influence of the auxiliary noises is rigorously incorporated with integrals over the functional derivatives with respect to the principal noises. The working equation now assumes a similar structure to the non-Markovian quantum state diffusion. Thanks to the noise disentanglement in different time intervals, we can perform piecewise ensemble average and serve the average of the preceding interval as the initial condition of the subsequent propagation. This strategy avoids the long-time stochastic average and the corresponding statistical errors will be saturated at long times. This talk will give numerical results for the spontaneous decay of two-state atoms and the spin-boson model and shows that the suggested method enables us to simulate the long-time quantum dissipative dynamics with long memories in the non-perturbative regime.

主講人介紹:

嚴(yán)運(yùn)安,魯東大學(xué)教授。2002年于中國科學(xué)院理論物理研究所獲博士學(xué)位,2002-2012年,先后在中國科學(xué)院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究,2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué)。嚴(yán)運(yùn)安教授目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動(dòng)力學(xué)。

大发888网页版出纳| 百家乐保单机作弊| 百家乐官网怎么出千| 任我赢百家乐软件中国有限公司| 极速百家乐官网真人视讯| 喜来登百家乐的玩法技巧和规则 | 百家乐官网赌假的工具| 百家乐视频台球下载| 静宁县| 百家乐里和的作用| 永州市| 丽都百家乐的玩法技巧和规则| 花莲市| 高尔夫百家乐的玩法技巧和规则| 百家乐官网赌场技巧论坛| 大发888游戏代充省钱技巧| 百家百家乐官网视频游戏世界 | 太阳城百家乐官网注册平台| 关于百家乐切入点| 金豪娱乐| 百家乐轮盘| 破解百家乐官网真人游戏| 澳门美高梅线上娱乐| 赌博中百家乐什么意思| 网上百家乐官网洗码技巧| 大发888娱乐城维护| 博盈百家乐游戏| 百家乐官网视频游戏盗号| 百家乐看图赢钱| 七匹狼百家乐官网的玩法技巧和规则 | 百家乐真钱电玩| 博E百百家乐官网现金网| 大发888注册送彩金| 利记百家乐现金网| 百家乐官网赌场怎么玩| 石屏县| 网上百家乐哪家最好| 易胜博百家乐官网作弊| 在线赌博网站| 大发888下载网址| 澳门百家乐技巧皇冠网|