彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐官网论坛香港马会| 足球博彩通| 实战百家乐官网十大取胜原因百分百战胜百家乐官网不买币不吹牛只你能做到按我说的.百家乐官网基本规则 | 大发888送58体验金| 百家乐官网最新打法| 金花娱乐城注册| 百家乐官网玩家技巧分享| 网上玩百家乐犯法| 赌博网站| 百家乐官网八卦投注法| 至尊百家乐吕文婉| 黄金城百家乐官网游戏| 送彩金百家乐的玩法技巧和规则| 海立方百家乐官网赢钱| 大发888游戏平台 df888ylc3403 | 百家乐赌场论坛| 百家乐官网游戏解密| 十三张百家乐的玩法技巧和规则| 线上百家乐官网平台| 威尼斯人娱乐网| 哪家百家乐官网最好| 财神百家乐的玩法技巧和规则 | 百家乐官网如何取胜| 百家乐7scs娱乐场| 澳门百家乐官网庄闲的玩法| 安桌百家乐游戏百家乐| 游戏百家乐官网押金| 百家乐官网打水策略| 百家乐长胜攻略| 襄樊市| 新东方百家乐的玩法技巧和规则| 金百家乐官网的玩法技巧和规则 | 百家乐官网合作代打| 现金博彩网| 真百家乐游戏| 澳门赌百家乐能赢钱吗| 澳门百家乐官网会出老千吗| 百家乐软件| 贵族国际娱乐城| 全讯网官方| 新朝代百家乐开户网站|