彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐官网下路教学| 玩百家乐都是什么人| 百家乐官网桌码合| 百家乐赌博出千| 大发888官网网址| 闻喜县| 百家乐学院教学视频| 88娱乐城天上人间| 百家乐现金投注信誉平台| 泽普县| 百家乐规则好学吗| 万豪国际| 做生意摆放什么会招财| 网上百家| 做生意人的风水| 皇冠网h| 百家乐赌博破解| 百家乐官网筹码方| 百家乐游戏大| 發中發百家乐官网的玩法技巧和规则 | 贝博百家乐官网的玩法技巧和规则 | 永凡棋牌游戏| 视频百家乐官网平台| 新利| 百家乐倍投| 广东百家乐官网桌布| 新皇冠现金网| 网页百家乐官网| CEO百家乐官网的玩法技巧和规则 喜达百家乐官网的玩法技巧和规则 | 百家乐麻将筹码币镭射贴膜| 同花顺百家乐官网的玩法技巧和规则 | 百家乐官网的如何玩| 百家乐7人桌布| 百家乐连赢的策略| 百家乐官网电脑上怎么赌| 娱乐城开户送钱| 百家乐技巧开户| 澳门百家乐几副牌| 百家乐官网筹码托盘| 柞水县| 六合彩预测|