彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

免费玩百家乐的玩法技巧和规则| 百家乐赢钱皇冠| 凯斯娱乐| 百家乐官网大赢家客户端| 蓝盾百家乐官网平台| A8百家乐的玩法技巧和规则| 夜总会百家乐的玩法技巧和规则| 百家乐官网在线娱乐可信吗| 永利高足球平台| 百家乐tt娱乐网| 云鼎百家乐官网现金网| 百家乐统计软件| 将军百家乐的玩法技巧和规则 | 夜总会百家乐官网的玩法技巧和规则 | 澳门赌百家乐心法| 狮威百家乐官网娱乐网| 真人游戏角色| 网上赌百家乐官网被抓应该怎么处理| 大发888老虎机手机版| 百家乐策略大全| 百家乐官网画面方法| 澳门百家乐官网有限公司| 百家乐喜牛| 678百家乐官网博彩娱乐场| 真人斗地主| 大发888易发| 百家乐官网家居 | 沙巴百家乐官网现金网| 大发888老虎机游戏| 百家乐tt娱乐平台| 百家乐娱乐城棋牌| 必博百家乐游戏| 至尊百家乐官网节目单| 龙虎斗游戏| 香港六合彩图| 亿乐棋牌游戏大厅| 百家乐庄闲和的倍数| 玩百家乐官网都是什么人| 百家乐官网tt娱乐城| 大发888大发888m摩卡游戏博彩官方下载| 风水做生意店铺的门|