彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

百家乐赢钱公式冯耕| 易胜博娱乐| 百家乐官网下注所有组合| 利来百家乐官网的玩法技巧和规则| 百家乐桌码合| 百家乐官网电脑上怎么赌| 百家乐娱乐城信息| 澳门百家乐怎么玩| 24山在风水学中应用| 大连娱网棋牌下载| 至尊百家乐规则| 太子娛樂城网址| 百家乐有作弊的吗| 鲜城| 缅甸百家乐官网网站是多少| 玩百家乐如何看路| 招远市| 百家乐赢得秘诀| 欢乐谷娱乐城| 百人百家乐软件供应| 百家乐官网娱乐城地址| 百家乐几点不用补| 三国百家乐官网的玩法技巧和规则| 波克城市棋牌中心| 大玩家百家乐现金网| 百家乐官网体育博彩| 百家乐必胜方法如果你还想继续不看可能后悔一生 | 狮威百家乐官网娱乐平台| 大发888 今日头条| 24山方向上| 大发888中文版| 24山风水水口| 彝良县| 威尼斯人娱乐怎么样| 云鼎百家乐注册| 百家乐官网筹码方形筹码| 百家乐博弈之赢者理论| 百家乐视频表演| 百家乐官网国际娱乐网| 大家旺娱乐| 大发888游戏平台c17|