彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

百家乐官网投注助手| 百家乐官网在发牌技巧| 大发888官网 888| 百家乐官网自动下注| 百家乐网站排名| 做百家乐官网网上投注| 新葡京百家乐的玩法技巧和规则| 香港六合彩码报| 星际百家乐娱乐城| 狮威百家乐官网娱乐场| 棋牌娱乐平台| 百家乐3带厂家地址| 葡京百家乐官网注码 | 东乌珠穆沁旗| 巴厘岛百家乐的玩法技巧和规则| 大杀器百家乐官网学院| 华克山庄娱乐| 七胜百家乐官网娱乐| 缅甸百家乐| 大发888娱乐官方| 澳门百家乐娱乐城注册| 迁安市| 全讯网433234| 带有百家乐的棋牌游戏有哪些| 真人百家乐的玩法技巧和规则| 风水24山向哪些不能兼| 百家乐官网赌场讨论群| 百家乐官网视频大厅| 百家乐翻天电影| 聚龍社百家乐官网的玩法技巧和规则| 百家乐官网历史路单| 六合彩公式| 百家乐官网前四手下注之观点| 宁远县| 球探比分 | 伟博娱乐城| 顶级赌场371betcwm| 百家乐推荐| 百家乐大西洋城| 线上百家乐| 香港百家乐玩法|