彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

學(xué)術(shù)報告-Convergence of stochastic methods for describing quantum dissipative dynamics and non-Markovian quantum master equations
作者:     供圖:     供圖:     日期:2020-11-16     來源:    

講座主題:Convergence of stochastic methods for describing quantum dissipative dynamics and non-Markovian quantum master equations

主講人: 嚴(yán)運安

工作單位:魯東大學(xué)物理與光電工程學(xué)院

活動時間:2020年11月19日 10:00-11:00

講座地點:光電學(xué)院1511報告廳

主辦單位:煙臺大學(xué)光電信息科學(xué)技術(shù)學(xué)院

內(nèi)容摘要:

The quantum dissipative dynamics is often described by system-plus-environment model and the effect of the environment on the evolution of the system can be characterized by noises. With such a paradigm, the stochastic approach becomes not only a powerful numerical method but also a useful tool to develop more efficient deterministic approaches for describing quantum dissipative dynamics. Various stochastic methods are available in the literature, such as the stochastic Liouville equation and the stochastic Schr?dinger equation. Also, different deterministic equations, to be specific, the hierarchical approach and the formulas of differentiation, can be obtained from the same stochastic Liouville equation. Here we present our progress demonstrating the convergence of the stochastic methods. First, we have proven the equivalence between the stochastic Liouville equation based on the stochastic decoupling of the system-bath interaction and the non-Markovian quantum state diffusion approach. Second, we have shown the unification between the formula of differentiation and the hierarchy approach. The equivalence of different stochastic approaches and the unification of different deterministic methods derived from the same stochastic equation show the convergence of the stochastic equations for describing quantum dissipative dynamics. These results may stimulate more efficient, versatile methods to study quantum dissipative systems.

主講人介紹:

嚴(yán)運安教授2002年于中國科學(xué)院理論物理研究所獲得博士學(xué)位。2002-2012年,他先后在中科院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究。他于2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué),現(xiàn)任魯東大學(xué)教授。他目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動力學(xué)。

百家乐官网怎么玩请指教| 百家乐单注技巧| 在线百家乐官网合作| YY百家乐的玩法技巧和规则| 百家乐官网园游戏77sonci...| 威尼斯人娱乐城现金开户| 百家乐官网游戏论坛| 百家乐2号死机| 百家乐官网赌博代理合作| 德州扑克在线| 百家乐赢的技巧| 大发888娱乐游戏充值| 百家乐官网路技巧| 广东省| 百家乐在线娱乐场| 百家乐官网那里玩| 淮北市| 风水24山向哪些不能兼| 瑞丰备用网址| 乐宝百家乐娱乐城| 永利高百家乐官网进不去| 百家乐海滨网现场| 百家乐官网庄闲必胜规| 赌百家乐官网波音备用网| 新利国际娱乐网| 请问下百家乐去哪个娱乐城玩最好呢| 百家乐庄闲点数| 送58百家乐官网的玩法技巧和规则 | 赌场百家乐官网台| 壶关县| 名仕国际棋牌官方网| 红树林百家乐的玩法技巧和规则| 神话百家乐官网的玩法技巧和规则 | 百家乐官网平台注册送现金| 彭州市| 澳门赌博技巧| 皇冠博彩| 大发888娱乐城游戏| 三国百家乐的玩法技巧和规则 | 百家乐桌子北京| 百家乐官网赌场娱乐网规则|